
Going Further with Point Pair Features.

Stefan Hinterstoisser1, Vincent Lepetit2, Naresh Rajkumar1, Kurt Konolige1

1Google,
{hinterst,nareshkumar,konolige}@google.com

2TU-Graz,
{lepetit}@icg.tugraz.at

Abstract. Point Pair Features is a widely used method to detect 3D
objects in point clouds, however they are prone to fail in presence of
sensor noise and background clutter. We introduce novel sampling and
voting schemes that significantly reduces the influence of clutter and
sensor noise. Our experiments show that with our improvements, PPFs
become competitive against state-of-the-art methods as it outperforms
them on several objects from challenging benchmarks, at a low compu-
tational cost.

1 Introduction

Object instance recognition and 3D pose estimation have received a lot of atten-
tion recently, probably because of their importance in robotics applications [9,
2, 12, 21, 5, 8, 26, 16]. For grasping and manipulation tasks, efficiency, reliability,
and accuracy are all desirable properties that are still very challenging in general
environments.

While many approaches have been developed over the last years, we focus
here on the approach from Drost et al. [9], which relies on a depth camera. Since
its publication, it has been improved and extended by many authors [2, 23, 7,
6, 15]. However, we believe it has not delivered its full potential yet: Drost’s
technique and its variants are based on votes from pairs of 3D points, but the
sampling of these pairs has been overlooked so far. As a result, these techniques
are very inefficient, and it usually still takes several seconds to run them.

Moreover, this approach is also very sensitive to sensor noise and 3D back-
ground clutter—especially if it is close to the target object: Sensor noise can
disturb the quantization on which the approach relies heavily for fast accesses.
Background clutter casts spurious votes that can mask the effects of correct
ones. As a result, several other approaches [12, 21, 5, 16] have shown significantly
better performance on recent datasets [12, 16].

In this paper, we propose a much better and efficient sampling strategy that,
together with small modifications to the pre- and post-processing steps, makes
our approach competitive against state-of-the-art methods: It beats them on
several objects on recent challenging datasets, at a low computational cost.

In the remainder of this paper, we review related work, and describe in detail
the method of Drost et al. [9]. We then introduce our contributions, which we
compare against state-of-the-art methods in the last section.



2 Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, Kurt Konolige

Fig. 1. Several 3D objects are simultaneously detected with our method under different
poses on cluttered background with partial occlusion and illumination changes. Each
detected object is augmented with its 3D model, its 3D bounding box and its coordinate
systems. For better visibility, the background is kept in gray and only detected objects
are in color.

2 Related Work

The literature on object detection and 3D pose estimation is very broad. We
focus here on recent work only and split them in several categories.

Sparse Feature-Based Methods. While popular for 3D object detection in color
or intensity images several years ago, these methods are less popular now as
practical robotics applications often consider objects that do not exhibit many
stable feature points due to the lack of texture.

Template-based methods. Several methods are based on templates [12, 21, 27],
where the templates capture the different appearances of objects under different
viewpoints. An object is detected when a template matches the image and its
3D pose is given by the template. [12] uses synthetic renderings of a 3D object
model to generate a large number of templates covering the full view hemisphere.
It employs an edge-based distance metric which works well for textureless ob-
jects, and refines the pose estimates using ICP to achieve an accurate 6D pose.
Such template-based approaches can work accurately and quickly in practice.
However, they show typical problems such as not being robust to clutter and
occlusions.

Local patch-based methods. [5, 24] use forest-based voting schemes on local patches
to detect and estimate 3D poses. While the former regresses object coordinates



Going Further with Point Pair Features 3

and conducts a subsequent energy-based pose estimation, the latter bases its
voting on a scale-invariant patch representation and returns location and pose
simultaneously. [4] also uses Random Forests to infer object and pose, but via a
sliding window through a depth volume. In the experiment section, we compare
our method against the recent approach of [5], which performs very well.

Point-cloud-based methods. Detection of 3D objects in point cloud data has a
very long history. A review can be found in [18]. One of the standard approaches
for object pose estimation is ICP [17], which however requires an initial estimate
and is not suited for object detection. Approaches based on 3D features are more
suitable and are usually followed by ICP for the pose refinement. These methods
include point pairs [9, 17], spin-images [14], and point-pair histograms [22, 25].
These methods are usually computationally expensive, and have difficulty in
scenes with heavy clutter. However, we show in this paper that these drawbacks
can be avoided.

The point cloud-based method proposed in [9] is the starting point of our
own method, and we detail it in the next section.

3 “Drost-PPF” [9]

One of the most promising algorithms based on point clouds for matching 3D
models to 3D scenes was proposed by Drost et al. [9]—in the rest of the paper, we
will refer to it as Drost-PPF. Since our approach is based on it, we will describe
it here in detail.

The authors of Drost-PPF coupled the existing idea of Point Pair Fea-
tures (PPF) with a voting scheme to solve for the object pose and location
simultaneously. More specifically, the goal of Drost-PPF is to establish for each
scene point a correspondence to a model point and solve for the remaining degree
of freedom to align the scene with the model data. This is done by using the
relations between the corresponding points and all their neighboring points in
model and scene space to vote in a Hough transform fashion for both unknowns.

Drost-PPF begins by extracting pairs of 3D points and their normals from the
object’s 3D model, to compute Point Pair Features (PPF) defined as a 4-vector:

F(m1,m2,n1,n2) = [‖d‖2,∠(n1,d),∠(n2,d),∠(n1,n2)]
>
, (1)

where m1 and m2 are two 3D points and n1 and n2 their normals, d = m2−m1,
and ∠(a,b) the angle between vectors a and b. This feature vector is invariant
to rigid motions, which allows the method to detect the objects under these
transformations.

The PPFs are discretized and used as indices of a lookup table. Each bin of
this lookup table stores the list of first model points mi and the corresponding
rotation angles αi

model of all the PPFs that are discretized to the bin’s index. In
this context, αi

model describes the rotation angle around the normal of the first
model point mi that aligns the corresponding point pair that is descretized to



4 Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, Kurt Konolige

the bin’s index to a fixed canonical frame—as described in [9]. The stored data
will be used during the voting stage.

At run-time, Drost-PPF tries to establish for each scene point a correspon-
dence to a model point. This is achieved by pairing each scene point with all
other scene points, compute the corresponding PPFs and match them with sim-
ilar PPFs computed from 3D points on the target objects. The latter step can
be performed efficiently using the lookup table: The content of the bins of the
lookup table indexed by the discretzed PPFs are used to vote for pairs made of
model points and discretized rotation angles αi = αi

model − αscene in a Hough
transform fashion. In this context, αscene is the rotation around the normal
of the first scene point that aligns the current scene point pair with the fixed
canonical frame. Once a peak in the Hough space is extracted, the 3D pose of
the object can be easily estimated from the extracted scene and model point
correspondence and its corresponding rotation αi.

[23] used this method to constrain a SLAM system by detecting multiple
repetitive object models. They devised a strategy towards an efficient GPU im-
plementation. Another immediate industrial application is bin picking, where
multiple instances of the CAD model is sought in a pile of objects [13]. The
approach has also been used in robotic applications [1, 20].

In addition, several extensions to [9] have been proposed. A majority of these
works focused on augmenting the feature description to incorporate color [6] or
visibility context [15]. [7] proposed using points or boundaries to exploit the
same framework in order to match planar industrial objects. [8] modified the
pair description to include image gradient information. There are also attempts
to boost the accuracy and performance of the matching, without modifying the
features. [10] made use of the special symmetric object properties to speed up the
detection by reducing the hash-table size. [26] proposed a scene specific weighted
voting method by learning the distinctiveness of the features as well as the model
points using a structured SVM.

Drost-PPF has often been criticized for the high dimensionality of the search
space [5], for its inefficiency [12], for being sensitive to 3D background clutter
and sensor noise [19]. Furthermore, other approaches significantly outperform it
on many datasets [16, 12].

In the next section, we discuss in greater detail the shortcomings of [9] and
propose several suitable feature sampling strategies that allow it to outperform
all state-of-the-art methods [12, 21, 16, 5] on the standard dataset of [12] and
the very challenging occlusion dataset of [16], in terms of recognition rate. In
addition, we show how we can speed up the approach to be significant faster
than [9].

4 Method

We describe here our contributions to make PPFs more discriminative, and more
robust to background clutter and sensor noise. We evaluate the improvement



Going Further with Point Pair Features 5

provided by each of these contributions, and compare their combinations against
state-of-the-art methods in the next section.

4.1 Pre-processing of the 3D Models and the Input Scene

During a pre-processing stage, Drost-PPF subsamples the 3D points of the target
objects and the input scene. The advantage is two-fold: This speeds up the
further computations and avoids considering too many ambiguous point pairs:
Points that are close to each other tend to have similar normals, and generate
many non-discriminative PPFs. Drost-PPF therefore subsamples the points so
that two 3D points have at least a chosen minimal distance to each other.

This however can lead to a loss of useful information when normals are ac-
tually different. We therefore keep pairs even with a distance smaller than the
minimal distance if the angle between the normals is larger than 30 degrees,
as these pairs are likely to be discriminative. Subsampling is then done as in
Drost-PPF, but with this additional constraint.

4.2 Smart Sampling of Point Pairs

After sub-sampling, in Drost-PPF, every scene point is paired with every other
scene point during runtime. The complexity is therefore quadratic in the number
of points in the 3D scene. In order to reduce computation time, [9] suggests
using only every m-th scene point as the first point, where m is often set to 5
in practice. While this improves runtime, the complexity remains quadratic and
matching performance suffers because we remove information from the already
sampled scene point cloud.

We propose a better way to speed up the computations without discarding
scene points: Given a first point from the scene it should be only paired with other
scene points that can belong to the same object. For example, if the distance
between the two points is larger than the size of the object, we know that these
two points cannot possibly belong to the same object and therefore should not
be paired. We show below that this leads to a method that can be implemented
much more efficiently.

A conservative way to do so would be to ignore any point that is farther
away than dobj from the first point of a pair, where dobj be the diameter of the
enclosing sphere of the target object, which defines a voting ball.

However, a spherical region can be a very bad approximation for some ob-
jects. In particular, with narrow elongated objects, sampling from a sphere with
radius dobj will generate many points on the background clutter if the object is
observed in a viewing direction parallel to its longest dimension, as depicted in
Fig. 2.

In these cases we would like to use a smaller sampling volume where the ratio
of scene points lying on the object compared to all other scene points is larger.
However, we do not have any prior information on the pose of the object and
the first scene point of the pair can lie anywhere on the object. It is therefore



6 Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, Kurt Konolige

Fig. 2. Different voting spheres for a given first point projected into 2D. The yellow
circle corresponds to a voting sphere with the smallest dimension of the object’s bound-
ing box as diameter. The blue circle corresponds to the voting sphere with the same
diameter as the enclosing sphere. Points sampled in the yellow sphere are much more
likely to lie on the object than points sampled in the blue sphere.

impossible to define a single volume that is smaller than the ball of radius dobj
without discarding pairs of scene points under certain object configurations that
both lie on the target object.

We therefore opted for using consecutively two voting balls with different
radiuses: A small one with radius Rmin =

√
d2min + d2med, where dmin is the

smallest dimension of the object’s bounding box and dmed is the median of its
three dimensions, and the large conservative one with radius Rmax = dobj. It can
be easily seen that Rmin is the smallest observable expansion of the object. We
will say that a point pair is accepted by a voting ball if the first point is at the
center of the ball and its distance to the second point is smaller than the radius
of the ball.

We first populate the accumulator with votes from pairs that are accepted
by the small ball. We extract the peaks from the accumulator, which each cor-
responds to a hypothesis on the object’s 3D pose and correspondence between
a model and scene point, as in Drost-PPF. We then continue populating the
accumulator with votes from pairs accepted by the large ball but were rejected
by the small one. We proceed as before and extract the peaks to generate pose
and point correspondence hypotheses. This way, under poses such as the one
illustrated by Fig. 2, we can get peaks that are less polluted by background clut-
ter during the first pass, and still get peaks for the other configurations during
the second pass.

To efficiently look for pairs accepted by a ball of radius d, we use a spatial
lookup table: For a given scene, we build a voxel grid filled with the scene points.
The number of voxels in each dimension is adapted to the scene points and can
differ in x, y, and z dimensions. Each voxel in this grid has size d, and stores
the indices of the scene points that lie in it. Reciprocally, for each scene point



Going Further with Point Pair Features 7

Fig. 3. A first scene point, in red, and three other scene points (green, blue and purple)
build three point pair features. Because of discretization and spreading, all three point
pair features correspond to the same scene rotation angle αscene. Furthermore, feature
discretization of F1 and F3 and spreading of F2 might lead to all three features being
mapped to the same hash bin X which results in voting for the same combinations of
model reference points and rotation angles (mi, αi), (mj, αj), (mk, αk), (ml, αl) several
times. This artificially increases the voting for these specific combinations of model
points and rotation angles and deteriorates the performance, especially in cases as
shown in this figure where votes come from background.

we also store the voxel index to which it belongs. Building up this voxel grid is a
O(n) operation. In order to extract for a given first point all other scene points
that are maximally d away, we first look up the voxel the scene reference point
belongs to and extract all the scene point indices stored in this voxel and in all
adjacent voxels. We check each of these scene points if its distance to the scene
reference point is actually smaller or equal than d.

The complexity of this method is therefore O(nk) where k is usually at least
one magnitude smaller than n, compared to the quadratic complexity of Drost-
PPF, while guaranteeing that all relevant point pairs are considered.

4.3 Accounting for Sensor Noise when Voting

For fast access, the PPFs are discretized. However, sensor noise can change
the discretization bin, preventing some PPFs from being correctly matched. We
overcome this problem by spreading the content of the look-up table during the
pre-processing of the model. Instead of storing the first model point and the
rotation angles only in the bin indexed by the discretized PPF vector, we also
store them in the (80) neighborhood bins indexed by the adjacent discretized
PPFs (there are 34 = 81 - 1 adjacent bins).

We face a similar problem at run-time during voting for the quantized rota-
tion angles around the point normals. To overcome this, we use the same strategy
as above and vote not only for the original quantized rotation angle but also for
its adjacent neighbors.



8 Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, Kurt Konolige

However, as shown in Fig. 3, spreading also has a drawback: Because of
discretization and spreading in the feature+rotation space, it is very likely that
pairs made of close scene points have the same quantized rotation angle and are
mapped to the same look-up table bin. They will thus vote for the same bin in
the accumulator space, introducing a bias in the votes.

A direct method to avoid multiple votes would be to use a 3D binary array
(ai,j,k) for each scene point to “flag” if a vote with the i-th model point, j-th
model point as first and second point respectively, and k-th quantized rotation
angle around the normal has already been cast, and prevent additional votes for
this combination.

Unfortunately, such an array would be very large as its size is quadratic with
the number of model points, and we would need to create one for each of the
scene point. We propose a much more tractable solution.

Instead of indexing a flag array by the pair of model points and correspond-
ing rotation, we use an array b indexed by the quantized PPFs the point pairs
generate. Each element of b is a 32-bit integer initialized to 0, and each bit
corresponds to a discretized rotation angle αscene. We simply set the bit corre-
sponding to a quantized PPF and scene rotation to 1 the first time it votes, and
to prevent further voting for the same combination of quantized PPF and scene
rotation, even if it is generated again by discretization and spreading. Spreading
is achieved by generating for each discretized PPF created at run-time from the
scene points the adjacent discretized PPFs, and treating them as the original
discretized PPFs.

Note that we use here the scene rotations around the normals since it is only
dependent on the scene point pair and not on the model points as shown in [9].
Thus, it is the same for all elements stored in one bin in the look-up table which
allows us to leverage it to perform flagging in b.

This solution is more efficient than the direct method discussed above, as
the number of possible entries is smaller in practice, thanks to the quantization
of the PPFs. b is constant in size for all objects and scales linearly with the
number of all possible quantizations of the PPFs. In practice, we quantize each
angle and the distance of Eq. (1) into 22 and 40 bins respectively, yielding to
223 × 40 possible quantized PPFs. In our implementation, when the number of
model points exceeds 650, the direct method takes significantly more time, with
a typical slow-down of factor 3 for 1000 model points.

4.4 Generating Object Pose and Postprocessing

To extract object poses from the accumulator, Drost-PPF uses a greedy cluster-
ing approach. They extract the peaks from the accumulator, each corresponding
to a hypothesis on the objects 3D pose and correspondence between a model
and scene point, and process them in the same order as their numbers of votes,
and assign them to the closest cluster if it is close enough, or otherwise create
another cluster.

We found that this method is not always reliable especially in case of noisy
sensors and background clutter. These result in spurious votes and the number



Going Further with Point Pair Features 9

of votes in the accumulator space is not necessarily a reliable indicator for the
quality of a hypothesis.

Therefore, we propose a different cluster strategy that takes into account
our voting strategy. We perform a bottom-up clustering of the pose hypotheses
generated during voting with one voting ball. We allow hypotheses to join several
clusters as long as their poses are similar to the one of the cluster center. We also
keep track of the model points associated with each hypothesis and only allow a
hypothesis to vote for a cluster if no other hypothesis with the same model point
has voted for this cluster before. Thus, we avoid that ambiguous and repetitive
geometric structures such as planar surfaces introduce biases.

For each of the few first clusters with the largest weights, we refine the
estimated pose using projective ICP [11]. In practice, we consider the four first
clusters for each of the two voting balls.

To reject the clusters that do not actually correspond to an object, we render
the object according to the corresponding 3D pose, and count how many pixels
have a depth close to the one of the rendering, how many are further away from
the camera—and could be occluded, and how many are closer—and are therefore
not consistent with the rendering. If the number of pixels that are closer is too
large compared to the total number of pixels, we reject the cluster.

In practice, this threshold is set to 10%. We also discard objects which are
too much occluded. As a last check, we compute areas with significant depth
or normal change in the scene, and compare them to the silhouette of the pro-
jected object: If the silhouette is not covered enough by depth or normal change,
we discard the match. In practice, we use the same threshold that we use for
occlusion check. We finally rank all remaining clusters according to how well
they fit the scene points and return the pose of the best one only, or in case of
multi-instance detection, the whole list of poses from all remaining clusters.

5 Experimental Results

We compare here our method against Drost-PPF, Linemod [12], DTTs [21],
Birdal et al. [2], Bachmann et al. [5], and Krull et al. [16] on the ACCV dataset
of [12] and on the Occlusion Dataset of [16].

For our method, we use the same parameters for all the experiments and
objects, except for the post processing thresholds to account for the specificities
of the occlusion dataset.

5.1 ACCV dataset of [12]

We first tested our method on the standard benchmark from [12]. This dataset
contains 16 objects with over 1100 depth and color images each, and provides
the ground truth 3D poses for each object. We only evaluate our method for the
non-ambiguous objects —we removed the bowl and the cup— because state-of-
the-art approaches considered only these objects.



10 Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, Kurt Konolige

[2] does not evaluate all objects and does not use refinement with ICP. For
the approach of Bachmann et al. [5], we use the numbers reported for synthetic
training without a ground plane, since adding a ground plane during training
artificially adds additional knowledge about the test set.

Approach Our Appr. Linemod [12] Drost [9] DTT [21] Brachmann [5] Birdal [3]

Sequence (#pics) Matching Score

Ape (1235) 98.5% 95.8% 86.5% 95.0% 85.4% 81.95%

Bench V. (1214) 99.8% 98.7% 70.7% 98.9% 98.9% –

Cam (1200) 99.3% 97.5% 78.6% 98.2% 92.1% 91.00%

Can (1195) 98.7% 95.4% 80.2% 96.3% 84.4% –

Cat (1178) 99.9% 99.3% 85.4% 99.1% 90.6% 95.76%

Driller (1187) 93.4% 93.6% 87.3% 94.3% 99.7% 81.22%

Duck (1253) 98.2% 95.9% 46.0% 94.2% 92.7% –

Box (1253) 98.8% 99.8% 97.0% 99.8% 91.1% –

Glue (1219) 75.4% 91.8% 57.2% 96.3% 87.9% –

Hole P. (1236) 98.1% 95.9% 77.4% 97.5% 97.9% –

Iron (1151) 98.3% 97.5% 84.9% 98.4% 98.8% 93.92%

Lamp (1226) 96.0% 97.7% 93.3% 97.9% 97.6% –

Phone (1224) 98.6% 93.3% 80.7% 88.3% 86.1% –

Table 1. Recognition rates according to the evaluation metric of [12] for different
methods. We perform best for eight out of thirteen objects, while [12, 5, 21] use color
data in addition to depth, and we only use depth data.

Like [5, 21, 12] we only use features that are visible from the upper hemisphere
of the object. However, differently to these methods and similarly to [9, 3] we
still allow the object to be detected in any arbitrary pose. Thus, we are solving
for a much larger search space than [5, 21, 12].

In addition, as in [9, 3], we only use the depth information and do not make
use of the color information as [5, 21, 12]. However, as shown in Table 1, we
perform best on eight objects out of thirteen.

5.2 Occlusion Dataset of [16]

The dataset of [12] is almost free of occlusion. Hence, to demonstrate robustness
with respect to occlusions, we tested our method on the occlusion dataset of
[16]. It is much more noisy and includes more background clutter than previous
occlusion datasets [17]. It includes over 1200 real depth and color images with 8
objects and their ground truth 3D poses.



Going Further with Point Pair Features 11

As Table 2 shows, our approach performs better for five objects while the
method of Krull et al. [16] performs better on three objects. On average we
perform 3.3% better than Krull that was the state-of-the-art on this dataset.
While we only use depth data, [16] also uses color data. Moreover, the method
in [16] was trained with an added a ground plane during training1, which gives
an extra advantage.

Approach Our Approach Linemod [12] Brachmann [5] Krull [16]

Sequence (#pics) Matching Score

Ape (952) 81.4% 49.8% 62.6% 77.9%

Can (1143) 94.7% 51.2% 80.2% 86.6%

Cat (655) 55.2% 34.9% 50.0% 55.6%

Driller (1044) 86.0% 59.6% 84.3% 93.6%

Duck (911) 79.7% 65.1% 67.6% 71.9%

Box (770) 65.6% 39.6% 8.5% 35.6%

Glue (462) 52.1% 23.3% 62.8% 67.9%

Hole Puncher (1156) 95.5% 67.2% 63.2% 94.8%

Average 76.3% 54.4% 67.3% 73.0%

Table 2. Recognition rates on the occlusion dataset [16] according to the evaluation
metric of [16]. Our approach performs better for five objects out of eight. On average
we perform 3.3% better than Krull [16], while Krull [16] uses color data in addition to
depth and a ground plane during training. We only use depth data.

5.3 Computation Times

Our approach takes between 0.1s and 0.8s to process a 640×480 depth map. Like
Drost-PPF, the sub-sampling during pre-processing depends on the object diam-
eter; denser sampling is used for smaller objects, which increases the processing
time.

On average it is about 6 times faster than Drost-PPF, while being signifi-
cantly more accurate. Moreover, our method could be implemented on GPU, as
[23] did, for further acceleration.

5.4 Worst Case Runtime Discussion

In this section we discuss the worst case runtime behavior. Despite our smart
sampling strategy presented in Sec. 4.2, the worst case runtime behavior is still

1 Private email exchange with the authors.



12 Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, Kurt Konolige

O(n2) where n is the number of subsampled points in a scene. However, this
is not a problem in practice as this happens only if all observed scene points
lie in a sphere with radius

√
3 × dobj (

√
3 comes from taking the diagonal of

voxels of width dobj into account). This is because our spatial look-up table only
gives back points that fall into the same voxel or adjacent voxels of the spatial
look-up table as our candidate point falls into. When there are points outside
this sphere, these points do not vote for this candidate point thus resulting in a
runtime O(nk) with k < n.

Taking normals into account for subsampling increases the number of sub-
sampled points by a factor typically smaller than two. Therefore the number of
points falling into one voxel of the spatial look-up table is not very large and due
to (self-) occlusion the overall number of visble points is fairly small, typically
around 1000 or less. However, even 1000 points are easily handled in a O(n2)
manner and in such a case matching is done quite quickly. For instance, match-
ing for a close-up view of the chair seen in Fig. 5 is usually done in less than
200ms.

More problematic are scenes where subsampled points on an object are only
a tiny fraction of the overall number of points (the overall number of points can
easily exceed 15k). However, in these cases our spatial look-up table kicks in and
the run-time goes from O(n2) for Drost et al. [9] to O(kn) where k << n. k is
often over twenty times smaller than n.

In short, in practice, the complexity of our approach is significantly better
than Drost’s [9].

5.5 Contribution of each Step

We also performed experiments on the occlusion dataset [16] with all eight ob-
jects to evaluate the influence on the matching score of each of the steps we
proposed compared to [9].

To do so, we first ran our implementation of the original Drost-PPF method,
and computed the average matching score SDrost for all eight objects on the
dataset of [16]. We then turned on all our contributions and computed the new
average matching score SOurs. The gain gc from each contribution alone is com-
puted by computing the average matching score Sc with only this contribution
turned on, and taking gc = Sc/(SOurs − SDrost).

As Fig. 4 shows, accounting for sensor noise is with 43.1% the most important
part, directly followed by smart sampling of points with 41.3% and finally our
contribution to pre-processing of the 3D model and the input scene by 15.6%.

6 Conclusion

We have shown that by cleverly sampling features and by adding feature spread-
ing to account for sensor noise, we can boost the method from Drost [9] to
outperform state-of-the-art approaches in object instance detection and pose
estimation, including those that use additional information such as color cues.



Going Further with Point Pair Features 13

Fig. 4. Three images of the dataset of [16] with at least seven out of nine objects
correctly detected. Note the strong background clutter and heavy occlusion. Lower
Right: Contribution of each proposed step to the matching scores compared to [9].
Accounting for sensor noise and our sampling of points are almost equal, while our
proposed pre-processing of the 3D model and the input scene has the smallest but still
significant effect.

References

1. Beetz, M., Klank, U., Kresse, I., Maldonado, A., Mosenlechner, L., Pangercic,
D., Ruhr, T., Tenorth, M.: Robotic Roommates Making Pancakes. In: Humanoid
Robots (2011)

2. Birdal, T., Ilic, S.: Point Pair Features Based Object Detection and Pose Estima-
tion Revisited. In: IEEE International Conference on 3D Vision (2015)

3. Birdal, T., Ilic, S.: Point Pair Features Based Object Detection and Pose Estima-
tion Revisited. In: IEEE International Conference on 3D Vision (2015)

4. Bonde, U., Badrinarayanan, V., Cipolla, R.: Robust Instance Recognition in Pres-
ence of Occlusion and Clutter. In: European Conference on Computer Vision (2014)

5. Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C.: Learn-
ing 6D Object Pose Estimation using 3D Object Coordinates. In: European Con-
ference on Computer Vision (2014)

6. Choi, C., Christensen, H.: 3D Pose Estimation of Daily Objects Using an RGB-D
Camera. In: International Conference on Intelligent Robots and Systems (2012)



14 Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, Kurt Konolige

Fig. 5. Several 3D objects are simultaneously detected with our method under different
poses on cluttered background with partial occlusion and illumination changes. Each
detected object is augmented with its 3D model, its 3D bounding box and its coordinate
systems. For better visibility, the background is kept in gray.

7. Choi, C., Taguchi, Y., Tuzel, O., Liu, M.L., Ramalingam, S.: Voting-based Pose
Estimation for Robotic Assembly Using a 3D Sensor. In: International Conference
on Robotics and Automation (2012)

8. Drost, B., Ilic, S.: 3D Object Detection and Localization using Multimodal Point
Pair Features. In: 3D Imaging, Modeling, Processing, Visualization and Transmis-
sion (2012)

9. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model Globally, Match Locally: Effi-
cient and Robust 3D Object Recognition. In: Conference on Computer Vision and
Pattern Recognition (2010)

10. de Figueiredo, R.P., Moreno, P., Bernardino, A.: Fast 3D Object Recognition of Ro-
tationally Symmetric Objects. In: Pattern Recognition and Image Analysis (2013)

11. Fisher, R.: Projective ICP and Stabilizing Architectural Augmented Reality Over-
lays. In: International Symposium on Virtual and Augmented Architecture (2001)

12. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab,
N.: Model Based Training, Detection and Pose Estimation of Texture-Less 3D
Objects in Heavily Cluttered Scenes. In: Asian Conference on Computer Vision
(2012)

13. Holz, D., Nieuwenhuisen, M., Droeschel, D., Stuckler, J., Berner, A., Li, J., Klein,
R., Behnke, S.: Gearing Up and Accelerating Cross-fertilization between Academic
and Industrial Robotics Research in Europe, chap. Active Recognition and Manip-
ulation for Mobile Robot Bin Picking. Springer (2014)

14. Johnson, A., Hebert, M.: Using Spin Images for Efficient Object Recognition in
Cluttered 3D Scenes. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (1999)

15. Kim, E., Medioni, G.: 3D Object Recognition in Range Images Using Visibility
Context. In: International Conference on Intelligent Robots and Systems (2011)

16. Krull, A., Brachmann, E., Michel, F., Yang, M.Y., Gumhold, S., Rother, C.: Learn-
ing Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images. In: Interna-
tional Conference on Computer Vision (2015)



Going Further with Point Pair Features 15

17. Mian, A., Bennamoun, M., Owens, R.: Three-Dimensional Model-Based Object
Recognition and Segmentation in Cluttered Scenes. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2006)

18. Mian, A., Bennamoun, M., Owens, R.: Automatic Correspondence for 3D Model-
ing: an Extensive Review. International Journal of Shape Modeling (2005)

19. Mohamad, M., Rappaport, D., Greenspan, M.: Generalized 4-Points Congruent
Sets for 3D Registration. In: IEEE International Conference on 3D Vision (2014)

20. Nieuwenhuisen, M., Droeschel, D., Holz, D., Stuckler, J., Berner, A., Li, J., Klein,
R., , Behnke, S.: Mobile Bin Picking with an Anthropomorphic Service Robot. In:
International Conference on Robotics and Automation (2013)

21. Rios-Cabrera, R., Tuytelaars, T.: Discriminatively Trained Templates for 3D Ob-
ject Detection: A Real-Time Scalable Approach. In: International Conference on
Computer Vision (2013)

22. Rusu, R., Blodow, N., Beetz, M.: Fast Point Feature Histograms (FPFH) for 3D
Registration. In: International Conference on Robotics and Automation (2009)

23. Salas-Moreno, R., Newcombe, R., Strasdat, H., Kelly, P., Davison, A.: SLAM++:
Simultaneous Localisation and Mapping at the Level of Objects. In: Conference on
Computer Vision and Pattern Recognition (2013)

24. Tejani, A., Tang, D., Kouskouridas, R., Kim, T.K.: Latent-Class Hough Forests for
3D Object Detection and Pose Estimation. In: European Conference on Computer
Vision (2014)

25. Tombari, F., Salti, S., Stefano, L.D.: Unique Signatures of Histograms for Local
Surface Description. In: European Conference on Computer Vision (2010)

26. Tuzel, O., Liu, M.Y., Taguchi, Y., Raghunathan, A.: Learning to Rank 3D Features.
In: European Conference on Computer Vision (2014)

27. Wohlhart, P., Lepetit, V.: Learning Descriptors for Object Recognition and 3D
Pose Estimation. In: Conference on Computer Vision and Pattern Recognition
(2015)

View publication statsView publication stats

https://www.researchgate.net/publication/308278136

